Author:
Vassetzky Yegor,Hair Alan,Méchali Marcel
Abstract
A dynamic change in the organization of different gene domains transcribed by RNA polymerase I, II, or III occurs during the progression from quiescent [pre-midblastula transition (pre-MBT)] to active (post-MBT) embryos during Xenopus development. In the rDNA, c-myc, and somatic 5S gene domains, a transition from random to specific anchorage to the nuclear matrix occurs when chromatin domains become active. The keratin gene domain was also randomly associated to the nuclear matrix before MBT, whereas a defined attachment site was found in keratinocytes. In agreement with this specification, ligation-mediated (LM)-PCR genomic footprinting carried out on the subpopulation of 5S domains specifically attached to the matrix reveals the hallmarks of determined chromatin after the midblastula transition. In contrast, the same analysis performed on the total 5S gene population does not reveal specific chromatin organization, validating the use of nuclear matrix fractionation to unveil active chromatin domains. These data provide a means for the determination of active chromosomal territories in the embryo and emphasize the role of nuclear architecture in regulated gene expression during development.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献