Author:
Yagita Kazuhiro,Yamaguchi Shun,Tamanini Filippo,van der Horst Gijsbertus T.J.,Hoeijmakers Jan H.J.,Yasui Akira,Loros Jennifer J.,Dunlap Jay C.,Okamura Hitoshi
Abstract
Nuclear entry of circadian oscillatory gene products is a key step for the generation of a 24-hr cycle of the biological clock. We have examined nuclear import of clock proteins of the mammalianperiod gene family and the effect of serum shock, which induces a synchronous clock in cultured cells. Previously, mCRY1 and mCRY2 have been found to complex with PER proteins leading to nuclear import. Here we report that nuclear translocation of mPER1 and mPER2 (1) involves physical interactions with mPER3, (2) is accelerated by serum treatment, and (3) still occurs in mCry1/mCry2double-deficient cells lacking a functional biological clock. Moreover, nuclear localization of endogenous mPER1 was observed in culturedmCry1/mCry2 double-deficient cells as well as in the liver and the suprachiasmatic nuclei (SCN) ofmCry1/mCry2 double-mutant mice. This indicates that nuclear translocation of at least mPER1 also can occur under physiological conditions (i.e., in the intact mouse) in the absence of any CRY protein. The mPER3 amino acid sequence predicts the presence of a cytoplasmic localization domain (CLD) and a nuclear localization signal (NLS). Deletion analysis suggests that the interplay of the CLD and NLS proposed to regulate nuclear entry of PER in Drosophilais conserved in mammals, but with the novel twist that mPER3 can act as the dimerizing partner.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献