Charting the metabolic landscape of the facultative methylotroph Bacillus methanolicus

Author:

Delépine BaudoinORCID,López Marina Gil,Carnicer Marc,Vicente Cláudia M.,Wendisch Volker F.,Heux StéphanieORCID

Abstract

ABSTRACTBacillus methanolicus MGA3 is a thermotolerant and relatively fast-growing methylotroph able to secrete large quantities of glutamate and lysine. These natural characteristics make B. methanolicus a good candidate to become a new industrial chassis organism, especially in a methanol-based economy. This has motivated a number of omics studies of B. methanolicus at the genome, transcript, protein and metabolic levels. Intriguingly, the only substrates known to support B. methanolicus growth as sole source of carbon and energy are methanol, mannitol, and to a lesser extent glucose and arabitol. We hypothesized that comparing methylotrophic and non-methylotrophic metabolic states at the flux level would yield new insights into MGA3 metabolism. 13C metabolic flux analysis (13C-MFA) is a powerful computational method to estimate carbon flows from substrate to biomass (i.e. the in vivo reaction rates of the central metabolic pathways) from experimental labeling data. In this study, we designed and performed a 13C-MFA of the facultative methylotroph B. methanolicus MGA3 growing on methanol, mannitol and arabitol to compare the associated metabolic states. The results obtained validate previous findings on the methylotrophy of B. methanolicus, allowed us to characterize the assimilation pathway of one of the studied carbon sources, and provide a better overall understanding of this strain.IMPORTANCEMethanol is cheap, easy to transport and can be produced both from renewable and fossil resources without mobilizing arable lands. As such, it is regarded as a potential carbon source to transition toward a greener industrial chemistry. Metabolic engineering of bacteria and yeast able to efficiently consume methanol is expected to provide cell factories that will transform methanol into higher-value chemicals in the so-called methanol economy. Toward that goal, the study of natural methylotrophs such as B. methanolicus is critical to understand the origin of their efficient methylotrophy. This knowledge will then be leveraged to transform such natural strains into new cell factories, or to design methylotrophic capability in other strains already used by the industry.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3