ERK1/2-dependent activation of FCHSD2 drives cancer cell-selective regulation of clathrin-mediated endocytosis

Author:

Xiao Guan-Yu,Mohanakrishnan Aparna,Schmid Sandra L.ORCID

Abstract

AbstractClathrin-mediated endocytosis (CME) regulates the uptake of cell surface receptors, as well as their downstream signaling activities. We recently reported that signaling reciprocally regulates CME in cancer cells and that the crosstalk can contribute to cancer progression. To further explore the nature and extent of the crosstalk between signaling and CME in cancer cell biology, we analyzed a panel of oncogenic signaling kinase inhibitors for their effects on CME. Inhibition of several kinases selectively affected CME function in cancer cells. Among these, ERK1/2 inhibition selectively inhibited CME in cancer cells by decreasing the rate of CCP initiation. We identified an ERK1/2 substrate, the FCH/F-BAR and SH3 domain-containing protein, FCHSD2, as being essential for the ERK1/2-dependent effects on CME and CCP initiation. ERK1/2 phosphorylation activates FCHSD2 and regulates EGFR endocytic trafficking as well as downstream signaling activities. Loss of FCHSD2 activity in non-small-cell lung cancer cells leads to increased cell surface expression and altered signaling downstream of EGFR, resulting in enhanced cell proliferation and migration. The expression level of FCHSD2 is positively correlated with higher cancer patient survival rate, suggesting that FCHSD2 negatively affects cancer progression. These findings provide new insight into the mechanisms and consequences of the reciprocal regulation of signaling and CME in cancer cells.SignificanceClathrin-mediated endocytosis (CME) determines the internalization of receptors and their downstream signaling. We discovered that CME is differentially regulated by specific signaling kinases in cancer cells. In particular, ERK1/2-mediated phosphorylation of the FCH/F-BAR and double SH3 domains-containing protein 2 (FCHSD2) regulates CME, and the trafficking and signaling activities of EGF receptors. This reciprocal interaction negatively regulates cancer proliferation and migration. The expression level of FCHSD2 is positively correlated with higher cancer patient survival rates. This study identifies signaling pathways that impinge on the endocytic machinery and reveals a molecular nexus for crosstalk between intracellular signaling and CME. Cancer cells specifically adapt this crosstalk as a determinant for tumor progression, which has implications for novel therapeutics against cancers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3