An artificial neural network identifies glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts

Author:

Janßen RenéORCID,Zabel Jakob,von Lukas Uwe,Labrenz Matthias

Abstract

AbstractArtificial neural networks can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network to support environmental monitoring efforts in case of a contamination event by detecting induced changes towards the microbial communities. The neural net was trained on taxonomic cluster count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of the herbicide glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the clusters primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species in cases of glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data.Highlight bullet pointsAn artificial neural net was able to identify glyphosate-affected microbial community assemblages based on next generation sequencing dataDecision-relevant taxonomic clusters can be identified by a stochastically subsetting approachJust a fraction of present clusters is needed for classificationFiltering of input data improves classification

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3