Netrin G1 promotes pancreatic tumorigenesis through cancer associated fibroblast driven nutritional support and immunosuppression

Author:

Francescone Ralph,Vendramini-Costa Débora Barbosa,Franco-Barraza Janusz,Wagner Jessica,Muir Alexander,Lau Allison N.,Gabitova Linara,Pazina Tatiana,Gupta Sapna,Luong Tiffany,Shah Neelima,Rollins Dustin,Malik Ruchi,Thapa Roshan,Restifo Diana,Zhou Yan,Cai Kathy Q.,Hensley Harvey H.,Tan Yinfei,Kruger Warren D.,Devarajan Karthik,Balachandran Siddharth,Klein-Szanto Andres J.,Wang Huamin,El-Deiry Wafik S.,Vander Heiden Matthew G.,Peri Suraj,Campbell Kerry S.,Astsaturov Igor,Cukierman EdnaORCID

Abstract

AbstractPancreatic ductal adenocarcinoma (PDAC) has a poor 5-year survival rate and lacks effective therapeutics. Therefore, it is of paramount importance to identify new targets. Using multi-plex data from patient tissue, three-dimensional co-culturing in vitro assays, and orthotopic murine models, we identified Netrin G1 (NetG1) as a promoter of PDAC tumorigenesis. NetG1+ cancer-associated fibroblasts (CAFs) supported PDAC survival, through a NetG1 mediated effect on glutamate/glutamine metabolism. NetG1+ CAFs were intrinsically immunosuppressive and inhibited NK cell mediated killing of tumor cells. These pro-tumor functions were controlled by a signaling circuit downstream to NetG1, which was comprised of AKT/4E-BP1, p38/FRA1, vesicular glutamate transporter 1, and glutamine synthetase. Finally blocking NetG1 with a neutralizing antibody stunted in vivo tumorigenesis, suggesting NetG1 as potential target in PDAC.SignificancePDAC is a devastating disease lacking effective therapies. A major hallmark of PDAC is desmoplasia, characterized by the expansion of CAFs and their extracellular matrix, creating a unique microenvironment that limits blood-supplied nutrition and is highly immunosuppressive. A better understanding of the role of CAFs in PDAC may lead to the identification of new targets for therapeutic intervention. Here, we uncovered roles for NetG1 in CAFs to promote tumorigenesis. NetG1 was important for two major CAF functions: the metabolic support of PDAC cells and the intrinsic immunosuppressive capacity of CAFs. Our results helped clarify the role that CAFs play in PDAC, by defining CAF phenotypes through NetG1 expression. Moreover, we established a link between CAF driven metabolism and their intrinsic immunosuppressive capacity, and identified a signaling circuit that governs NetG1 functions. Finally, we demonstrated the therapeutic potential of inhibiting NetG1 in vivo by limiting tumorigenesis in mice with a neutralizing antibody, illustrating that targeting stromal NetG1 could be an attractive therapeutic approach.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3