Investigating the deregulation of metabolic tasks via Minimum Network Enrichment Analysis (MiNEA) as applied to nonalcoholic fatty liver disease using mouse and human omics data

Author:

Pandey Vikash,Hatzimanikatis Vassily

Abstract

AbstractNonalcoholic fatty liver disease (NAFLD) is associated with metabolic syndromes spanning a wide spectrum of diseases, from simple steatosis to the more complex nonalcoholic steatohepatitis. To identify the deregulation that occurs in metabolic processes at the molecular level that give rise to these various NAFLD phenotypes, algorithms such as pathway enrichment analysis (PEA) can be used. These analyses require the use of predefined pathway maps, which are composed of reactions describing metabolic processes/subsystems. Unfortunately, the annotation of the metabolic subsystems can differ depending on the pathway database used, making these approaches subject to biases associated with different pathway annotations, and these methods cannot capture the balancing of cofactors and byproducts through the complex nature and interactions of genome-scale metabolic networks (GEMs). Here, we introduce a framework entitled Minimum Network Enrichment Analysis (MiNEA) that is applied to GEMs to generate all possible alternative minimal networks (MiNs), which are possible and feasible networks composed of all the reactions pertaining to various metabolic subsystems that can synthesize a target metabolite. We applied MiNEA to investigate deregulated MiNs and to identify key regulators in different NAFLD phenotypes, such as a fatty liver and liver inflammation, in both humans and mice by integrating condition-specific transcriptomics data from liver samples. We identified key deregulations in the synthesis of cholesteryl esters, cholesterol, and hexadecanoate in both humans and mice, and we found that key regulators of the hydrogen peroxide synthesis network were regulated differently in humans and mice. We further identified which MiNs demonstrate the general and specific characteristics of the different NAFLD phenotypes. MiNEA is applicable to any GEM and to any desired target metabolite, making MiNEA flexible enough to study condition-specific metabolism for any given disease or organism.Author SummaryThis work aims to introduce a network-based enrichment analysis using metabolic networks and transcriptomics data. Previous pathways/subsystems enrichment methods use predefined gene annotations of metabolic processes and gene annotations can differ based on different resources and can produce bias in pathways definitions. Thus, we introduce a framework, Minimum Network Enrichment Analysis (MiNEA), which first finds all possible minimal-size networks for a given metabolic process/task and then identifies deregulated minimal networks using deregulated genes between two conditions. MiNEA also identifies the deregulation in key reactions that are overlapped across all possible minimal-size networks. We applied MiNEA to identify deregulated metabolic tasks and their synthesis networks in the steatosis and nonalcoholic steatohepatitis (NASH) disease using a metabolic network and transcriptomics data of mouse and human liver samples. We identified key regulators of NASH form the synthesis networks of hydrogen peroxide and ceramide in both humans and mice. We also identified opposite deregulation in NASH for the phosphatidylserine synthesis network between humans and mice. MiNEA finds synthesis networks for a given target metabolite and due to this it is flexible to study deregulation in different phenotypes. MiNEA can be widely applicable for studying context-specific metabolism for any organism because the metabolic networks and context-specific gene expression data are now available for many organisms.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3