Dual metabolomic profiling uncovers Toxoplasma manipulation of the host metabolome and the discovery of a novel parasite metabolic capability

Author:

Olson William J.,Stevenson David,Amador-Noguez Daniel,Knoll Laura J.ORCID

Abstract

AbstractThe obligate intracellular parasite Toxoplasma gondii is auxotrophic for several key metabolites and must scavenge these from the host. It is unclear how Toxoplasma manipulates host metabolism for its overall growth rate and non-essential metabolites. To address this question, we measured changes in the joint host-parasite metabolome over a time course of infection. Host and parasite transcriptomes were simultaneously generated to determine potential changes in metabolic enzyme levels. Toxoplasma infection increased activity in multiple metabolic pathways, including the tricarboxylic acid cycle, the pentose phosphate pathway, glycolysis, amino acid synthesis, and nucleotide metabolism. Our analysis indicated that changes in some pathways, such as the tricarboxylic acid cycle, derive from the parasite, while changes in others, like the pentose phosphate pathway, were host and parasite driven. Further experiments led to the discovery of a Toxoplasma enzyme, sedoheptulose bisphosphatase, which funnels carbon from glycolysis into ribose synthesis through a energetically driven dephosphorylation reaction. This second route for ribose synthesis resolves a conflict between the Toxoplasma tricarboxylic acid cycle and pentose phosphate pathway, which are both NADP+ dependent. During periods of high energetic and ribose need, the competition for NADP+ could result in lethal redox imbalances. Sedoheptulose bisphosphatase represents a novel step in Toxoplasma central carbon metabolism that allows Toxoplasma to satisfy its ribose demand without using NADP+. Sedoheptulose bisphosphatase is not present in humans, highlighting its potential as a drug target.Author SummaryThe obligate intracellular parasite Toxoplasma is commonly found among human populations worldwide and poses severe health risks to fetuses and individuals with AIDS. While some treatments are available they are limited in scope. A possible target for new therapies is Toxoplasma’s limited metabolism, which makes it heavily reliant in its host. In this study, we generated a joint host/parasite metabolome to better understand host manipulation by the parasite and to discover unique aspects of Toxoplasma metabolism that could serve as the next generation of drug targets. Metabolomic analysis of Toxoplasma during an infection time course found broad activation of host metabolism by the parasite in both energetic and biosynthetic pathways. We discovered a new Toxoplasma enzyme, sedoheptulose bisphosphatase, which redirects carbon from glycolysis into ribose synthesis. Humans lack sedoheptulose bisphosphatase, making it a potential drug target. The wholesale remodeling of host metabolism for optimal parasite growth is also of interest, although the mechanisms behind this host manipulation must be further studied before therapeutic targets can be identified.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3