Effects of bicycle geometry and riding position on the potential of residual limb muscles to pedaling with a transfemoral prosthesis: a computer simulation study

Author:

Okita YusukeORCID,Nakamura Takashi

Abstract

AbstractWe performed musculoskeletal simulations to provide information on the effects of riding position and bicycle geometry on pedaling with a transfemoral prosthesis. Sixty-four models and their corresponding kinematics in one pedaling cycle were generated from the baseline one-leg cycling model by varying one of the six variables (seat height, seat-tube angle, crank length, pelvic tilt, anteroposterior seating position, and thigh length relative to the leg). Induced acceleration analysis was performed to compute the potentials of the residual hip muscles for crank rotation in each model. The simulation results quantified the effects of each variable on the hip and knee kinematics and muscle potential during a pedaling cycle; seat height, crank length, and pelvic tilt were the primary candidates for bicycle fitting considering their accessibility and simple effects on the joint kinematics and muscle potential. The seat-tube angle (similar to pelvic tilt) and the anteroposterior seating position (similar to seat height and seat-tube angle) seemed to have an effect similar to the other variables and thus can be reserved for fine-tuning after gross fitting of the bicycle. Although not considered for adjustment, considering the effects of the thigh length could help as it affects hip kinematics and muscle potentials.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. Strength and endurance training of an individual with left upper and lower limb amputations

2. Effect of endurance training program based on anaerobic threshold (AT) for lower limb amputees;J Rehabil Res Dev,2001

3. Cycling with an amputation

4. Gailey RS. Physical therapy for sports and recreation. In: Smith DG , Michael JW , Bowker JH , eds. Atlas of Amputations and Limb Deficiencies. Rosemont, IL: American Academy of Orthopaedic Surgeons; 2004:633–660.

5. Analysis of EMG measurements during bicycle pedalling

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3