Accelerated Biochemical Kinetic Model Fitting via the Asynchronous, Generalized Island Method

Author:

Medley J Kyle,Asifullah Shaik,Hellerstein Joseph,Sauro Herbert M

Abstract

Mechanistic kinetic models of biological pathways are an important tool for understanding biological systems. Constructing kinetic models requires fitting the parameters to experimental data. However, parameter fitting on these models is a non–convex, non–linear optimization problem. Many algorithms have been proposed to addressing optimization for parameter fitting including globally convergent, population–based algorithms. The computational complexity of the this optimization for even modest models means that parallelization is essential. Past approaches to parameter optimization have focused on parallelizing a particular algorithm. However, this requires re–implementing the algorithm usinga distributed computing framework, which requires a significant investment of time and effort. There are two major drawbacks of this approach: First, the choice of best algorithm may depend on the model. Given the large variety of optimization algorithms available, it is difficult to re–implement every potentially useful algorithm. Second, when new advances are made in a given optimization algorithm, the parallel implementation must be updated to take advantage of these advantages. Thus, there is a continual burden placed on the parallel implementation. The drawbacks of re–implementing algorithms lead us to a different approach to parallelizing parameter optimization. Instead of parallelizing the algorithms themselves, we run many instances of the algorithm on single cores. This provides great flexibility as to the choice of algorithms by allowing us to reuse previous implementations. Also, it does not require the creation and maintenance of parallel versions of optimization algorithms. This approach is known as the island method. To our knowledge, the utility of the island method for parameter fitting in systems biology has not been previously demonstrated. For the parameter fitting problem, we allow islands to exchange information about their “best” solutions so that all islands leverage the discoveries of the few. This turns out to be avery effective in practice, leading to super–linear speedups. That is, if a single processor finds the optimal value of parameters in time t, then N processors exchanging information in this way find the optimal value much faster than t/N. We show that the island method is able to consistently provide good speedups for these problems. We also benchmark the island method against a variety of large, challenging kinetic models and show that it is able to consistently improve the quality of fit in less time than a single–threaded implementation.Our software is available at https://github.com/sys-bio/sabaody under a Apache 2.0 license.Contactmailto:medjk@comcast.net

Publisher

Cold Spring Harbor Laboratory

Reference33 articles.

1. Reliable and efficient solution of genome-scale models of metabolism and macromolecular expression;Scientific reports,2017

2. Lawrence Davis . Handbook of genetic algorithms. 1991.

3. Particle swarm optimization: developments, applications and resources;Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546),2001

4. A New Heuristic Optimization Algorithm: Harmony Search

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3