Low dimensional dynamics for working memory and time encoding

Author:

Cueva Christopher J.,Saez Alex,Marcos Encarni,Genovesio Aldo,Jazayeri Mehrdad,Romo Ranulfo,Salzman C. Daniel,Shadlen Michael N.,Fusi Stefano

Abstract

Our decisions often depend on multiple sensory experiences separated by time delays. The brain can remember these experiences and, simultaneously, estimate the timing between events. To understand the mechanisms underlying working memory and time encoding we analyze neural activity recorded during delays in four experiments on non-human primates. To disambiguate potential mechanisms, we propose two analyses, namely, decoding the passage of time from neural data, and computing the cumulative dimensionality of the neural trajectory over time. Time can be decoded with high precision in tasks where timing information is relevant and with lower precision when irrelevant for performing the task. Neural trajectories are always observed to be low dimensional. These constraints rule out working memory models that rely on constant, sustained activity, and neural networks with high dimensional trajectories, like reservoir networks. Instead, recurrent networks trained with backpropagation capture the time encoding properties and the dimensionality observed in the data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3