Tissue-guided LASSO for prediction of clinical drug response using preclinical samples

Author:

Huang Edward W,Bhope Ameya,Lim Jing,Sinha Saurabh,Emad Amin

Abstract

ABSTRACTPrediction of clinical drug response (CDR) of cancer patients, based on their clinical and molecular profiles obtained prior to administration of the drug, can play a significant role in individualized medicine. Machine learning models have the potential to address this issue, but training them requires data from a large number of patients treated with each drug, limiting their feasibility. While large databases of drug response and molecular profiles of preclinicalin-vitrocancer cell lines (CCLs) exist for many drugs, it is unclear whether preclinical samples can be used to predict CDR of real patients.We designed a systematic approach to evaluate how well different algorithms, trained on gene expression and drug response of CCLs, can predict CDR of patients. Using data from two large databases, we evaluated various linear and non-linear algorithms, some of which utilized information on gene interactions. Then, we developed a new algorithm called TG-LASSO that explicitly integrates information on samples’ tissue of origin with gene expression profiles to improve prediction performance. Our results showed that regularized regression methods provide significantly accurate prediction. However, including the network information or common methods of including information on the tissue of origin did not improve the results. On the other hand, TG-LASSO improved the predictions and distinguished resistant and sensitive patients for 7 out of 13 drugs. Additionally, TG-LASSO identified genes associated with the drug response, including known targets and pathways involved in the drugs’ mechanism of action. Moreover, genes identified by TG-LASSO for multiple drugs in a tissue were associated with patient survival. In summary, our analysis suggests that preclinical samples can be used to predict CDR of patients and identify biomarkers of drug sensitivity and survival.AUTHOR SUMMARYCancer is among the leading causes of death globally and perdition of the drug response of patients to different treatments based on their clinical and molecular profiles can enable individualized cancer medicine. Machine learning algorithms have the potential to play a significant role in this task; but, these algorithms are designed based the premise that a large number of labeled training samples are available, and these samples are accurate representation of the profiles of real tumors. However, due to ethical and technical reasons, it is not possible to screen humans for many drugs, significantly limiting the size of training data. To overcome this data scarcity problem, machine learning models can be trained using large databases of preclinical samples (e.g. cancer cell line cultures). However, due to the major differences between preclinical samples and real tumors, it is unclear how accurately such preclinical-to-clinical computational models can predict the clinical drug response of cancer patients.Here, first we systematically evaluate a variety of different linear and nonlinear machine learning algorithms for this particular task using two large databases of preclinical (GDSC) and tumor samples (TCGA). Then, we present a novel method called TG-LASSO that utilizes a new approach for explicitly incorporating the tissue of origin of samples in the prediction task. Our results show that TG-LASSO outperforms all other algorithms and can accurately distinguish resistant and sensitive patients for the majority of the tested drugs. Follow-up analysis reveal that this method can also identify biomarkers of drug sensitivity in each cancer type.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3