Structure-Based Design of a Highly Immunogenic, Conformationally Stabilized FimH Antigen for a Urinary Tract Infection Vaccine

Author:

Silmon de Monerri Natalie C.ORCID,Che Ye,Lees Joshua A.,Jasti Jayasankar,Wu Huixian,Griffor Matthew C.,Kodali Srinivas,Hawkins Julio Caesar,Lypowy Jacqueline,Ponce Christopher,Curley Kieran,Esadze Alexandre,Carcamo Juan,Keeney David,Illenberger Arthur,Matsuka Yury V.,Shanker Suman,Chorro Laurent,Gribenko Alexey V.,Han SeungilORCID,Anderson Annaliesa S.,Donald Robert G. K.

Abstract

AbstractAdhesion ofE. colito the urinary tract epithelium is a critical step in establishing urinary tract infections. FimH is an adhesin positioned on the fimbrial tip which binds to mannosylated proteins on the urinary tract epithelium via its lectin domain (FimHLD). FimH is of interest as a target of vaccines to prevent urinary tract infections (UTI). Previously, difficulties in obtaining purified recombinant FimH fromE. colialong with the poor inherent immunogenicity of FimH have hindered the development of effective FimH vaccine candidates. To overcome these challenges, we have devised a novel production method using mammalian cells to produce high yields of homogeneous FimH protein with comparable biochemical and immunogenic properties to FimH produced inE. coli.Next, to optimize conformational stability and immunogenicity of FimH, we used a computational approach to design improved FimH mutants and evaluated their biophysical and biochemical properties, and murine immunogenicity. This approach identified a highly immunogenic FimH variant (FimH-DSG TM) that is produced at high yields in mammalian cells. By x-ray crystallography, we confirmed that the stabilized structure of the FimHLDin FimH-DSG TM is similar to native FimH on the fimbrial tip. Characterization of monoclonal antibodies elicited by FimH-DSG TM that can block bacterial binding to mannosylated surfaces identified 4 non-overlapping binding sites whose epitopes were mapped via a combinatorial cryogenic electron microscopy approach. Novel inhibitory epitopes in the lectin binding FimH were identified, revealing diverse functional mechanisms of FimH-directed antibodies with relevance to FimH-targeted UTI vaccines.Author summaryEscherichia coliis the primary cause of urinary tract infections. Adherence to uroepithelial surfaces is mediated by the pilus adhesin protein FimH, which is of interest as a vaccine candidate. We developed a method for producing recombinant FimH at bioprocess scale, previously a barrier to commercial development. Structure-based design and screening was used to identify a novel FimH vaccine candidate with improved stability and immunogenicity in mice. Structure of this full-length protein was determined by X-ray crystallography and shown to closely resemble the pilus adhesin present in its native form on the bacterial surface. Binding sites of biologically active FimH monoclonal antibodies were determined by X-ray crystallography or by cryo-electron microscopy, providing insights into mechanisms by which antibodies block binding of the bacteria to urinary tract receptors.One sentence summaryStructure-based design of a conformationally stabilizedE. coliFimH vaccine candidate capable of eliciting antibodies to diverse epitopes with the ability to block bacterial binding to bladder epithelial cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3