MCP5, a methyl-accepting chemotaxis protein regulated by both the Hk1-Rrp1 and Rrp2-RpoN-RpoS pathways, is required for the immune evasion ofBorrelia burgdorferi

Author:

Raghunandanan Sajith,Zhang Kai,Yan Zhang,Sze Ching Wooen,Priya Raj,Luo Yongliang,Lynch Michael J,Crane Brian RORCID,Li Chunhao,Yang X. FrankORCID

Abstract

ABSTRACTBorrelia(orBorreliella)burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen, adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well established as essential for its enzootic cycle, the function of methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle ofB. burgdorferiremains unclear. In this study, we demonstrate that MCP5, one of the most abundant MCPs inB. burgdorferi, is differentially expressed in response to environmental signals as well as at different stages of the pathogen’s enzootic cycle. Specifically, the expression ofmcp5is regulated by the Hk1-Rrp1 and Rrp2-RpoN-RpoS pathways, which are critical for the spirochete’s colonization of the tick vector and mammalian host, respectively. Infection experiments with anmcp5mutant revealed that spirochetes lacking MCP5 could not establish infections in either C3H/HeN mice or Severe Combined Immunodeficiency (SCID) mice, which are defective in adaptive immunity, indicating the essential role of MCP5 in mammalian infection. However, themcp5mutant could establish infection and disseminate in NOD SCID Gamma (NSG) mice, which are deficient in both adaptive and most innate immune responses, suggesting a crucial role of MCP5 in evading host innate immunity. In the tick vector, themcp5mutants survived feeding but failed to transmit to mice, highlighting the importance of MCP5 in transmission. Our findings reveal that MCP5, regulated by the Rrp1 and Rrp2 pathways, is critical for the establishment of infection in mammalian hosts by evading host innate immunity and is important for the transmission of spirochetes from ticks to mammalian hosts, underscoring its potential as a target for intervention strategies.SUMMARYLyme disease is the most commonly reported arthropod-borne illness in the US, Europe, and Asia. The causative agent of Lyme disease,Borrelia burgdorferi, is maintained in an enzootic cycle involving arthropod vectors (Ixodesticks) and rodent mammalian hosts. Understanding howB. burgdorferimoves within this natural cycle is crucial for developing new strategies to combat Lyme disease. The complex nature of the enzootic cycle necessitates sensory-guided movement in response to environmental stimuli.B. burgdorferipossesses a unique and intricate chemotaxis signaling system, with methyl-accepting chemotaxis proteins (MCPs) at its core. These proteins are responsible for sensing environmental signals and guiding bacterial movement toward or away from stimuli. This study found that one of the MCPs, MCP5, is highly expressed and differentially regulated during the enzootic cycle by the Hk1-Rrp1 and Rrp2-RpoN-RpoS pathways. MCP5 is crucial for mammalian infection, aiding in immune evasion and transmission from ticks to mammals, providing a foundation for further research intoB. burgdorferi’s navigation within its hosts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3