The spatial layout of antagonistic brain regions is explicable based on geometric principles

Author:

Leech Robert,Braga Rodrigo M,Haydock David,Vowles Nicholas,Jefferies Elizabeth,Bernhardt Boris,Turkheimer Federico,Alberti Francesco,Margulies Daniel,Sherwood Oliver,Jones Emily JH,Smallwood Jonathan,Váša František

Abstract

AbstractBrain activity emerges in a dynamic landscape of regional increases and decreases that span the cortex. Increases in activity during a cognitive task are often assumed to reflect the processing of task-relevant information, while reductions can be interpreted as suppression of irrelevant activity to facilitate task goals. Here, we explore the relationship between task-induced increases and decreases in activity from a geometric perspective. Using a technique known as kriging, developed in earth sciences, we examined whether the spatial organisation of brain regions showing positive activity could be predicted based on the spatial layout of regions showing activity decreases (and vice versa). Consistent with this hypothesis we established the spatial distribution of regions showing reductions in activity could predict (i) regions showing task-relevant increases in activity in both groups of humans and single individuals; (ii) patterns of neural activity captured by calcium imaging in mice; and, (iii) showed a high degree of generalisability across task contexts. Our analysis, therefore, establishes that antagonistic relationships between brain regions are topographically determined, a spatial analog for the well documented anti-correlation between brain systems over time.Significance StatementIt is well documented that brain activity changes in response to the demands of different situations, although what gives rise to the observed cortical activity patterns remains poorly understood. Using analytic tools from earth sciences, we examined whether the landscape of regional changes in activity emerge from a set of common topographical causes. Using only regions showing decreases in activity, we could predict the landscape of regions showing increases in activity using fMRI in humans and calcium imaging in mice. Our results suggest topographical principles determine the landscape of peaks and valleys in brain activity -- a spatial analog for the well documented anti-correlation between sets of brain regions over time.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3