Transcriptomic comparison of in vitro models of the human placenta

Author:

Lapehn SamanthaORCID,Nair Sidharth,Firsick Evan J.,MacDonald James,Thoreson Ciara,Litch James A,Bush Nicole R.,Kadam Leena,Girard Sylvie,Myatt Leslie,Prasad Bhagwat,Sathyanarayana Sheela,Paquette Alison G.ORCID

Abstract

AbstractStudying the human placenta through in vitro cell culture methods is necessary due to limited access and amenability of human placental tissue to certain experimental methods as well as distinct anatomical and physiological differences between animal and human placentas. Selecting an in vitro culture model of the human placenta is challenging due to representation of different trophoblast cell types with distinct biological roles and limited comparative studies that define key characteristics of these models. Therefore, the aim of this research was to create a comprehensive transcriptomic comparison of common in vitro models of the human placenta compared to bulk placental tissue from the CANDLE and GAPPS cohorts (N=1083). We performed differential gene expression analysis on publicly available RNA sequencing data from 6 common in vitro models of the human placenta (HTR-8/SVneo, BeWo, JEG-3, JAR, Primary Trophoblasts, and Villous Explants) and compared to CANDLE and GAPPS bulk placental tissue or cytotrophoblast, syncytiotrophoblast, and extravillous trophoblast cell types derived from bulk placental tissue. All in vitro placental models had a substantial number of differentially expressed genes (DEGs, FDR<0.01) compared to the CANDLE and GAPPS placentas (Average DEGs=10,873), and the individual trophoblast cell types (Average DEGs=5,346), indicating that there are vast differences in gene expression compared to bulk and cell-type specific human placental tissue. Hierarchical clustering identified 53 gene clusters with distinct expression profiles across placental models, with 22 clusters enriched for specific KEGG pathways, 7 clusters enriched for high-expression placental genes, and 7 clusters enriched for absorption, distribution, metabolism, and excretion genes. In vitro placental models were classified by fetal sex based on expression of Y-chromosome genes that identified HTR-8/SVneo cells as being of female origin, while JEG-3, JAR, and BeWo cells are of male origin. Overall, none of the models were a close approximation of the transcriptome of bulk human placental tissue, highlighting the challenges with model selection. To enable researchers to select appropriate models, we have compiled data on differential gene expression, clustering, and fetal sex into an accessible web application:“Comparative Transcriptomic Placental Model Atlas (CTPMA)”which can be utilized by researchers to make informed decisions about their selection of in vitro placental models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3