Using lifestyle information in polygenic modeling of blood pressure traits: a simple method to reduce bias

Author:

Tiezzi Francesco,Goda Khushi,Morgante FabioORCID

Abstract

AbstractComplex traits are determined by the effects of multiple genetic variants, multiple environmental factors, and potentially their interaction. Predicting complex trait phenotypes from genotypes is a fundamental task in quantitative genetics that was pioneered in agricultural breeding for selection purposes. However, it has recently become important in human genetics. While prediction accuracy for some human complex traits is appreciable, this remains low for most traits. A promising way to improve prediction accuracy is by including not only genetic information but also environmental information in prediction models. However, environmental factors can, in turn, be genetically determined. This phenomenon gives rise to a correlation between the genetic and environmental components of the phenotype, which violates the assumption of independence between the genetic and environmental components of most statistical methods for polygenic modeling. In this work, we investigated the impact of including 27 lifestyle variables as well as genotype information (and their interaction) for predicting diastolic blood pressure, systolic blood pressure, and pulse pressure in older individuals in UK Biobank. The 27 lifestyle variables were included as either raw variables or adjusted by genetic and other non-genetic factors. The results show that including both lifestyle and genetic data improved prediction accuracy compared to using either piece of information alone. Both prediction accuracy and bias can improve substantially for some traits when the models account for the lifestyle variables after their proper adjustment. Our work confirms the utility of including environmental information in polygenic models of complex traits and highlights the importance of proper handling of the environmental variables.Author summaryMany traits of medical relevance are “complex” in that they are affected by both genetic and environmental factors. Thus, using genetic and environmental information in statistical methods has the potential to increase the accuracy of phenotypic prediction, the ultimate goal of precision medicine. However, the correlation between the genetic and environmental components (that arises when environmental variables are themselves genetically determined) and the correlations between environmental measures can be problematic for most statistical methods used for modeling complex traits. In this work, we investigated these issues using 27 lifestyle measures in addition to genetic information for predicting diastolic blood pressure, systolic blood pressure, and pulse pressure in older individuals. We show that including lifestyle and genetic data resulted in more accurate predictions than either data type alone. Moreover, adjusting the lifestyle measures for the genetic and other non-genetic effects can help improve the predictions further.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3