Abstract
AbstractRandom fluctuations (noise) in gene expression can be studied from two complementary perspectives: following expression in a single cell over time or comparing expression between cells in a proliferating population at a given time. Here, we systematically investigated scenarios where both perspectives lead to different levels of noise in a given gene product. We first consider a stable protein, whose concentration is diluted by cellular growth, and the protein inhibits growth at high concentrations, establishing a positive feedback loop. For a stochastic model with molecular bursting of gene products, we analytically predict and contrast the steady-state distributions of protein concentration in both frameworks. Although positive feedback amplifies the noise in expression, this amplification is much higher in the population framework compared to following a single cell over time. We also study other processes that lead to different noise levels even in the absence of such dilution-based feedback. When considering randomness in the partitioning of molecules between daughters during mitosis, we find that in the single-cell perspective, the noise in protein concentration is independent of noise in the cell cycle duration. In contrast, partitioning noise is amplified in the population perspective by increasing randomness in cell-cycle time. Overall, our results show that the commonly used single-cell framework that does not account for proliferating cells can, in some cases, underestimate the noise in gene product levels. These results have important implications for studying the inter-cellular variation of different stress-related expression programs across cell types that are known to inhibit cellular growth.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献