Neural Heterogeneity Enhances Reliable Neural information Processing: Local Sensitivity and Globally Input-slaved Transient Dynamics

Author:

Wu Shengdun,Huang Haiping,Wang Shengjun,Chen Guozhang,Zhou Changsong,Yang DongpingORCID

Abstract

AbstractCortical neuronal activity varies over time and across repeated stimulation trials, yet consistently represents stimulus features. The dynamical mechanism underlying this reliable representation and computation remains elusive. This study uncovers a mechanism that achieves reliable neural information processing, leveraging a biologically plausible network model with neural heterogeneity. We first investigate neuronal timescale diversity in reliable computation, revealing it disrupts intrinsic coherent spatiotemporal patterns, enhances local sensitivity, and aligns neural network activity closely with inputs. This leads to local sensitivity and globally input-slaved transient dynamics, essential for reliable neural processing. Other neural heterogeneities, such as non-uniform input connections and spike threshold heterogeneity, plays similar roles, highlighting neural heterogeneity’s role in shaping consistent stimulus representation. This mechanism offers a potentially general framework for understanding neural heterogeneity in reliable computation and informs the design of new reservoir computing models endowed with liquid wave reservoirs for neuromorphic computing.TeaserNeural diversity disrupts spatiotemporal patterns, aligning network activity with inputs for reliable information processing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3