A disease resistance protein triggers oligomerization of its NLR helper into a hexameric resistosome to mediate innate immunity

Author:

Madhuprakash JogiORCID,Toghani AmirAliORCID,Contreras Mauricio P.ORCID,Posbeyikian AndresORCID,Richardson Jake,Kourelis JiorgosORCID,Bozkurt Tolga O.ORCID,Webster MichaelORCID,Kamoun SophienORCID

Abstract

AbstractNRCs are essential helper NLR (nucleotide-binding domain and leucine-rich repeat) proteins that execute the immune response triggered by disease resistance proteins, also known as sensor NLRs. The structure of the resting state of NbNRC2 was recently revealed to be a homodimer. However, the sensor-activated state has not yet been elucidated. In this study, we used cryo-EM to determine the structure of sensor-activated NbNRC2, which forms a hexameric inflammasome-like structure known as resistosome. To confirm the functional significance of the hexamer, we mutagenized the interfaces involved in oligomerization and found that mutations in three nucleotide-binding domain interface residues abolish oligomerization and immune signalling. Comparative structural analyses between the resting state NbNRC2 homodimer and the sensor-activated homohexamer revealed significant structural rearrangements before and after activation, providing insights into NLR activation mechanisms. Furthermore, structural comparisons between the NbNRC2 hexamer and previously reported CC-NLR pentameric assemblies revealed features in NbNRC2 that allow for the integration of an additional protomer. We also used the NbNRC2 hexamer structure to assess the recently released AlphaFold 3 for the prediction of activated CC-NLR oligomers. This revealed that AlphaFold 3 allows for high-confidence modelling of the N-terminalα1-helices of NbNRC2 and other CC-NLRs, a region that has proven difficult to fully resolve using structural approaches. Overall, our work sheds light on the structural and biochemical mechanisms underpinning NLR activation and expands our understanding of NLR structural diversity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3