Contrastive Learning for Robust Cell Annotation and Representation from Single-Cell Transcriptomics

Author:

Andrekson LeoORCID,Mercado RocíoORCID

Abstract

AbstractBatch effects are a significant concern in single-cell RNA sequencing (scRNA-Seq) data analysis, where variations in the data can be attributed to factors unrelated to cell types. This can make downstream analysis a challenging task. In this study, we present a novel deep learning approach using contrastive learning and a carefully designed loss function for learning an generalizable embedding space from scRNA-Seq data. We call this model CELLULAR: CELLUlar contrastive Learning for Annotation and Representation. When benchmarked against multiple established methods for scRNA-Seq integration, CELLULAR outperforms existing methods in learning a generalizable embedding space on multiple datasets. Cell annotation was also explored as a downstream application for the learned embedding space. When compared against multiple well-established methods, CELLULAR demonstrates competitive performance with top cell classification methods in terms of accuracy, balanced accuracy, and F1 score. CELLULAR is also capable of performing novel cell type detection. These findings aim to quantify themeaningfulnessof the embedding space learned by the model by highlighting the robust performance of our learned cell representations in various applications. The model has been structured into an open-source Python package, specifically designed to simplify and streamline its usage for bioinformaticians and other scientists interested in cell representation learning.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3