Genomic and single-cell characterization of patient-derived tumor organoid models of head and neck squamous cell carcinoma

Author:

Um Jung Hyun,Zheng Yueyuan,Mao Qiong,Nam Chehyun,Zhao Hua,Koh Yoon Woo,Shin Su-Jin,Park Young Min,Lin De-Chen

Abstract

AbstractHead and Neck Squamous Cell Carcinoma (HNSCC) remains a significant health burden due to tumor heterogeneity and treatment resistance, emphasizing the need for improved biological understanding and tailored therapies. This study enrolled 31 HNSCC patients for the establishment of patient-derived tumor organoids (PDOs), which faithfully maintained genomic features and histopathological traits of primary tumors. Long-term culture preserved key characteristics, affirming PDOs as robust representative models. PDOs demonstrated predictive capability for cisplatin treatment responses, correlatingex vivodrug sensitivity with patient outcomes. Bulk and single-cell RNA sequencing unveiled molecular subtypes and intratumor heterogeneity (ITH) in PDOs, paralleling patient tumors. Notably, a hybrid epithelial-mesenchymal transition (hEMT)-like ITH program is associated with cisplatin resistance and poor patient survival. Functional analyses identified amphiregulin (AREG) as a potential regulator of the hybrid epithelial/mesenchymal state. Moreover, AREG contributes to cisplatin resistance via EGFR pathway activation, corroborated by clinical samples. In summary, HNSCC PDOs serve as reliable and versatile models, offer predictive insights into ITH programs and treatment responses, and uncover potential therapeutic targets for personalized medicine.One Sentence SummaryThis study establishes patient-derived tumor organoids (PDOs) from 31 Head and Neck Squamous Cell Carcinoma (HNSCC) patients, faithfully recapitulating characteristics of primary tumors and accurately predicting clinical responses to cisplatin treatment. We reveal intertumoral heterogeneity within PDOs and a hybrid epithelial-mesenchymal transition (hEMT) program conferring cisplatin resistance, highlighting amphiregulin (AREG) as a regulator of cellular plasticity and potential therapeutic target for HNSCC treatment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3