Multimodal framework to resolve variants of uncertain significance inTSC2

Author:

Biar Carina GORCID,Pfeifer Cole,Carvill Gemma L,Calhoun Jeffrey DORCID

Abstract

AbstractEfforts to resolve the functional impact of variants of uncertain significance (VUS) have lagged behind the identification of new VUS; as such, there is a critical need for scalable VUS resolution technologies. Computational variant effect predictors (VEPs), once trained, can predict pathogenicity for all missense variants in a gene, set of genes, or the exome. Existing tools have employed information on known pathogenic and benign variants throughout the genome to predict pathogenicity of VUS. We hypothesize that taking a gene-specific approach will improve pathogenicity prediction over globally-trained VEPs. We tested this hypothesis using the geneTSC2, whose loss of function results in tuberous sclerosis, a multisystem mTORopathy affecting about 1 in 6,000 individuals born in the United States.TSC2has been identified as a high-priority target for VUS resolution, with (1) well-characterized molecular and patient phenotypes associated with loss-of-function variants, and (2) more than 2,700 VUS already documented in ClinVar. We developedTuberous sclerosis classifier toResolve variants ofUncertainSignificance inTSC2(TRUST), a machine learning model to predict pathogenicity ofTSC2missense VUS. To test whether these predictions are accurate, we further introduce curated loci prime editing (cliPE) as an accessible strategy for performing scalable multiplexed assays of variant effect (MAVEs). Using cliPE, we tested the effects of more than 200TSC2variants, including 106 VUS. It is highly likely this functional data alone would be sufficient to reclassify 92 VUS with most being reclassified as likely benign. We found that TRUST’s classifications were correlated with the functional data, providing additional validation for thein silicopredictions. We provide our pathogenicity predictions and MAVE data to aid with VUS resolution. In the near future, we plan to host these data on a public website and deposit into relevant databases such as MAVEdb as a community resource. Ultimately, this study provides a framework to complete variant effect maps ofTSC1andTSC2and adapt this approach to other mTORopathy genes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3