Rab27b promotes lysosomal function and alpha-synuclein clearance in neurons

Author:

Scholz KasandraORCID,Pattanayak RudradipORCID,Roschonporn Ekkatine,Pair Frank SandersORCID,Nobles Amber,Yacoubian Talene A.ORCID

Abstract

ABSTRACTAlpha-synuclein (αsyn) is the key pathogenic protein implicated in synucleinopathies including Parkinson’s Disease (PD) and Dementia with Lewy Bodies (DLB). In these diseases, αsyn is thought to spread between cells where it accumulates and induces pathology; however, mechanisms that drive its propagation or aggregation are poorly understood. We have previously reported that the small GTPase Rab27b is elevated in human PD and DLB and that it can mediate the autophagic clearance and toxicity of αsyn in a paracrine αsyn cell culture neuronal model. Here, we expanded our previous work and further characterized a role for Rab27b in neuronal lysosomal processing and αsyn clearance. We found that Rab27b KD in this αsyn inducible neuronal model resulted in lysosomal dysfunction and increased αsyn levels in lysosomes. Similar lysosomal proteolytic defects and enzymatic dysfunction were observed in both primary neuronal cultures and brain lysates from Rab27b knockout (KO) mice. αSyn aggregation was exacerbated in Rab27b KO neurons upon treatment with αsyn preformed fibrils. We found no changes in lysosomal counts or lysosomal pH in either model, but we did identify defects in acidic vesicle trafficking in Rab27b KO primary neurons which may drive lysosomal dysfunction and promote αsyn aggregation. Rab27b OE enhanced lysosomal activity and reduced insoluble αsyn accumulation. Finally we found elevated Rab27b levels in human postmortem incidental Lewy Body Disease (iLBD) subjects relative to healthy controls. These data suggest a role for Rab27b in neuronal lysosomal activity and identify it as a potential therapeutic target in synucleinopathies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3