PlantRNA-FM: An Interpretable RNA Foundation Model for Exploration Functional RNA Motifs in Plants

Author:

Yu HaopengORCID,Yang Heng,Sun Wenqing,Yan Zongyun,Yang Xiaofei,Zhang Huakun,Ding Yiliang,Li Ke

Abstract

ABSTRACTThe complex ‘language’ of plant RNA encodes a vast array of biological regulatory elements that orchestrate crucial aspects of plant growth, development, and adaptation to environmental stresses. Recent advancements in foundation models (FMs) have demonstrated their unprecedented potential to decipher complex ‘language’ in biology. In this study, we introduced PlantRNA-FM, a novel high-performance and interpretable RNA FM specifically designed based on RNA features including both sequence and structure. PlantRNA-FM was pre-trained on an extensive dataset, integrating RNA sequences and RNA structure information from 1,124 distinct plant species. PlantRNA-FM exhibits superior performance in plant-specific downstream tasks, such as plant RNA annotation prediction and RNA translation efficiency (TE) prediction. Compared to the second-best FMs, PlantRNA-FM achieved anF1 score improvement of up to 52.45% in RNA genic region annotation prediction and up to 15.30% in translation efficiency prediction, respectively. Our PlantRNA-FM is empowered by our interpretable framework that facilitates the identification of biologically functional RNA sequence and structure motifs, including both RNA secondary and tertiary structure motifs across transcriptomes. Through experimental validations, we revealed novel translation-associated RNA motifs in plants. Our PlantRNA-FM also highlighted the importance of the position information of these functional RNA motifs in genic regions. Taken together, our PlantRNA-FM facilitates the exploration of functional RNA motifs across the complexity of transcriptomes, empowering plant scientists with novel capabilities for programming RNA codes in plants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3