Abstract
ABSTRACTExcess systemic inflammation can often be lethal in septic and trauma patients due to onset of multiple organ dysfunction syndrome (MODS). As of right now, there are no effective immunomodulatory therapeutics that can promote survival within this patient population. Pro-regenerative extracellular matrix (ECM) biomaterials have shown success for treatment of local inflammation but have not been fully explored for treating systemic inflammation. Here, we demonstrate efficacy of an intravenously delivered infusible ECM (iECM) material, which promotes increased survival in a murine model of MODS by decreasing systemic mediators of inflammation. Lung and kidney failure are associated with higher mortality in MODS compared to other organ failures, and we demonstrate that iECM localizes primarily to kidney and lung tissues during systemic inflammation induced by endotoxin. iECM successfully lowered vascular permeability within lung tissue and lowered levels of inflammatory cytokine signaling such as IL-6, verified via ELISA and gene expression analyses. We also demonstrated that immune cell infiltration into lung tissue was modulated with iECM treatment, with an increase in neutrophil retention in the lung and decreases in pro-inflammatory macrophage presence. In summation, iECM improves survival from severe systemic inflammation by decreasing the local and systemic inflammatory signaling pathways that contribute to MODS. These results provide a strong rationale for translational studies of iECM treatment in systemic inflammatory syndromes, including sepsis and trauma.
Publisher
Cold Spring Harbor Laboratory