Spatiotemporal patterns in cortical development: Age, puberty, and individual variability from 9 to 13 years of age

Author:

Bottenhorn Katherine L.ORCID,Corbett Jordan D.,Ahmadi Hedyeh,Herting Megan M.ORCID

Abstract

AbstractHumans and nonhuman primate studies suggest that timing and tempo of cortical development varies neuroanatomically along a sensorimotor-to-association (S-A) axis. Prior human studies have reported a principal S-A axis across various modalities, but largely rely on cross-sectional samples with wide age-ranges. Here, we investigate developmental changes and individual variability in cortical organization along the S-A axis between the ages of 9-13 years using a large, longitudinal sample (N = 2487-3747, 46-50% female) from the Adolescent Brain Cognitive Development Study (ABCD Study®). This work assesses multiple aspects of neurodevelopment indexed by changes in cortical thickness, cortical microarchitecture, and resting-state functional fluctuations. First, we evaluated S-A organization in age-related changes and, then, computed individual-level S-A alignment in brain changes and assessing differences therein due to age, sex, and puberty. Varying degrees of linear and quadratic age-related brain changes were identified along the S-A axis. Yet, these patterns of cortical development were overshadowed by considerable individual variability in S-A alignment. Even within individuals, there was little correspondence between S-A patterning across the different aspects of neurodevelopment investigated (i.e., cortical morphology, microarchitecture, function). Some of the individual variation in developmental patterning of cortical morphology and microarchitecture was explained by age, sex, and pubertal development. Altogether, this work contextualizes prior findings that regional age differences do progress along an S-A axis at a group level, while highlighting broad variation in developmental change between individuals and between aspects of cortical development, in part due to sex and puberty.Significance StatementUnderstanding normative patterns of adolescent brain change, and individual variability therein, is crucial for disentangling healthy and abnormal development. We used longitudinal human neuroimaging data to study several aspects of neurodevelopment during early adolescence and assessed their organization along a sensorimotor-to-association (S-A) axis across the cerebral cortex. Age differences in brain changes were linear and curvilinear along this S-A axis. However, individual-level sensorimotor-association alignment varied considerably, driven in part by differences in age, sex, and pubertal development.

Publisher

Cold Spring Harbor Laboratory

Reference62 articles.

1. Cellular correlates of gray matter volume changes in magnetic resonance morphometry identified by two-photon microscopy

2. Demographic, physical and mental health assessments in the adolescent brain and cognitive development study: Rationale and description

3. Bates D , Maechler M , Bolker [aut B cre , Walker S , Christensen RHB , Singmann H , Dai B , Scheipl F , Grothendieck G , Green P , Fox J , Bauer A , simulate.formula) PNK (shared copyright on, Tanaka E , Jagan M (2024) lme4: Linear Mixed-Effects Models using “Eigen” and S4. Available at: https://cran.r-project.org/web/packages/lme4/index.html [Accessed May 24, 2024].

4. Probing Interactions in Fixed and Multilevel Regression: Inferential and Graphical Techniques

5. Graded Variation in T1w/T2w Ratio during Adolescence: Measurement, Caveats, and Implications for Development of Cortical Myelin

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3