Elevated rates of molecular evolution genome-wide in mutualist legumes and rhizobia

Author:

Harrison L. TORCID,Stinchcombe J. RORCID,Frederickson M. EORCID

Abstract

AbstractRates of molecular evolution vary greatly among even closely related species. Although theory predicts that antagonistic interactions between species increase rates of molecular evolution, predictions for how mutualism affects evolutionary rates are mixed. Here, we compared rates of molecular evolution between 1) mutualistic and non-mutualistic legumes, 2) an independent set of symbiotic rhizobia and their non-symbiotic close relatives, and 3) symbiotic and non-symbiotic clades withinEnsifer, a diverse genus of bacteria with various lifestyles. We assembled transcriptomesde novofor 12 legume species and then calculated dN/dS ratios at orthologous genes in all species to determine if genes in mutualistic plants evolve faster or slower than in their non-mutualistic relatives. We also calculated dN/dS ratios in symbiosis genes known to be important for nodulation with rhizobia. We found that mutualists have higher rates of molecular evolution genome-wide compared to non-mutualist legumes. We next calculated dN/dS ratios in 14 bacteria species across the proteobacteria phylogeny that differ in whether they associate mutualistically with plants, using previously published data. We found that in most pairs, symbiotic rhizobia show higher dN/dS values compared to their non-symbiotic relatives. Finally, within a bacterial genus with many well-characterized mutualist species (Ensifer), we calculated dN/dS ratios in symbiotic and non-symbiotic clades and found that symbiotic lineages have higher rates of molecular evolution genome-wide, but not at genes on the symbiotic plasmid pSymB. Our results suggest that although mutualism between legumes and rhizobia is associated with elevated rates of molecular evolution genome-wide, symbiosis genes may be evolutionarily stagnant.

Publisher

Cold Spring Harbor Laboratory

Reference77 articles.

1. Mutualist‐mediated effects on species' range limits across large geographic scales

2. Multiple mutualist effects on genomewide expression in the tripartite association between Medicago truncatula, nitrogen-fixing bacteria and mycorrhizal fungi;Molecular Ecology,2016

3. Effect of temperature and substrate on germination of Peltophorum dubium (Sprengel) Taubert seeds;Acta Sci. Biol. Sci,2011

4. Andrews S . 2010. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

5. Specificity in Legume-Rhizobia Symbioses

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3