Abstract
AbstractHow can a single protein domain encode a conformational landscape with multiple stably-folded states, and how do those states interconvert? Here, we use real-time and relaxation-dispersion NMR to characterize the conformational landscape of the circadian rhythm protein KaiB fromRhodobacter sphaeroides. Unique among known natural metamorphic proteins, this KaiB variant spontaneously interconverts between two monomeric states: the “Ground” and “Fold-switched” (FS) state. KaiB in its FS state interacts with multiple binding partners, including the central KaiC protein, to regulate circadian rhythms. We find that KaiB itself takes hours to interconvert between the Ground and FS state, underscoring the ability of a single sequence to encode the slow process needed for function. We reveal the rate-limiting step between the Ground and FS state is thecis-transisomerization of three prolines in the fold-switching region by demonstrating interconversion acceleration by the prolyl isomerase CypA. The interconversion proceeds through a “partially disordered” (PD) state, where the C-terminal half becomes disordered while the N-terminal half remains stably folded. We discovered two additional properties of KaiB’s landscape. Firstly, the Ground state experiences cold denaturation: at 4°C, the PD state becomes the majorly populated state. Secondly, the Ground state exchanges with a fourth state, the “Enigma” state, on the millisecond timescale. We combine AlphaFold2-based predictions and NMR chemical shift predictions to predict this “Enigma” state is a beta-strand register shift that eases buried charged residues, and support this structure experimentally. These results provide mechanistic insight in how evolution can design a single sequence that achieves specific timing needed for its function.Significance StatementOne can conceptualize KaiB as an on-off switch to regulate circadian rhythms in bacteria, where the “On state” is the Fold-switched state that binds KaiC and other proteins, and the “Off state” is the Ground state. Our work exemplifies how evolution tuned the kinetics of interconversion to align with the hour-long timescale of its biological function. The Ground state is dramatically destabilized at cold temperatures, and the system contains an alternate “off” conformation that exchanges with the primary “off” conformation at faster timescales than the rate-limiting step. Our findings demonstrate a simple principle for evolving a protein switch: one part of a protein domain remains stably folded to serve as a scaffold for the rest of the protein to re-fold.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献