HDAC1 acts as tumor suppressor in ALK-positive anaplastic large-cell lymphoma: Implications for HDAC inhibitor therapy

Author:

Zrimšek MašaORCID,Draganić Kristina,Malzer AnnaORCID,Doblmayr Verena,de Freitas e Silva RafaelORCID,Wohlhaupter Sabrina,Perez Malla Carlos Uziel,Mišura KatarinaORCID,Fischer HeinzORCID,Schachner HelgaORCID,Schiefer Ana-IrisORCID,Sheibani-Tezerji RahelehORCID,Ellmeier WilfriedORCID,Seiser ChristianORCID,Egger GerdaORCID

Abstract

ABSTRACTHistone deacetylases (HDACs) play essential roles in T cell development, and several HDAC inhibitors (HDACi) have gained approval for treating peripheral T cell lymphomas. In this study, we investigated the effects of genetic or pharmacological HDAC inhibition on NPM-ALK positive anaplastic large cell lymphoma (ALCL) development to elucidate potential contraindications or indications for the use of HDACi for the treatment of this rare T-cell lymphoma. Short-term systemic pharmacological inhibition of HDACs using the class I-specific HDACi Entinostat in a premalignant ALCL mouse model postponed or even abolished lymphoma development, despite high expression of the NPM-ALK fusion oncogene. To further disentangle the effects of systemic HDAC inhibition from thymocyte intrinsic effects, conditional genetic deletions of highly homologous class I HDAC1 and HDAC2 enzymes were employed. In sharp contrast to the systemic inhibition, T cell-specific deletion ofHdac1orHdac2in the ALCL mouse model significantly accelerated NPM-ALK-driven lymphomagenesis, withHdac1loss having a more pronounced effect. Integration of gene expression and chromatin accessibility data revealed thatHdac1deletion selectively perturbed cell type specific transcriptional programs, crucial for T cell differentiation and signaling. Moreover, multiple oncogenic signaling pathways, including PDGFRB signaling, were highly upregulated. The accelerated lymphomagenesis primarily depended on the catalytic activity of HDAC1, as the expression of a catalytically inactive HDAC1 protein showed similar effects to the complete knockout. Our findings underscore the tumor-suppressive function of class I HDAC1 and HDAC2 in T cells during ALCL development, however systemic pharmacological inhibition of HDACs is still a valid treatment strategy, which could potentially improve current therapeutic outcomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3