ema-tool: a Python Library for the Comparative Analysis of Embeddings from Biomedical Foundation Models

Author:

Rissom Pia FrancescaORCID,Sarmiento Paulo Yanez,Safer JordanORCID,Coley Connor W.ORCID,Renard Bernhard Y.ORCID,Heyne Henrike O.ORCID,Iqbal SumaiyaORCID

Abstract

The increasing use of foundation models in biomedical applications raises opportunities and challenges to analyze the information captured in the high-dimensional embedding spaces of different models. Existing tools offer limited capabilities for comparing information represented in the embedding spaces of different models. We introduceema-tool, a Python library designed to analyze and compare embeddings from different models for a set of samples, focusing on the representation of groups known to share similarities.ema-toolexamines pairwise distances to uncover local and global patterns and tracks the representations and relationships of these groups across different embedding spaces. We demonstrate the use ofema-toolthrough two examples. In the first example, we analyze the representation of ion channel proteins across versions of the ESM protein language models. In the second example, we analyze the representation of genetic variants within theHCN1gene across these models. The source code is available athttps://github.com/broadinstitute/ema.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Recent advances in natural language processing via large pre-trained language models: A survey;ACM Computing Surveys,2023

2. Gpt-4 technical report;arXiv preprint,2023

3. Bert: Pretraining of deep bidirectional transformers for language understanding;arXiv preprint,2018

4. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension;arXiv preprint,2019

5. Giorgio Valentini , Dario Malchiodi , Jessica Gliozzo , Marco Mesiti , Mauricio Soto-Gomez , Alberto Cabri , Justin Reese , Elena Casiraghi , and Peter N Robinson . The promises of large language models for protein design and modeling. Frontiers in Bioinformatics, 3, 2023.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3