Abstract
ABSTRACTOne problem that has hampered the use of red fluorescent proteins in the fast-developing nematodeC. eleganshas been the substantial time delay in maturation of several generations of red fluorophores. The recently described mScarlet-I3 protein has properties that may overcome this limitation. We compare here the brightness and maturation time of CRISPR/Cas9 genome-engineered mScarlet, mScarlet3, mScarlet-I3 and GFP reporter knock-ins. Comparing the onset and brightness of expression of reporter alleles ofC. elegans golg-4, encoding a broadly expressed Golgi resident protein, we found that the onset of detection of mScarlet-I3 in the embryo is several hours earlier than older versions of mScarlet and comparable to GFP. These findings were further supported by comparing mScarlet-I3 and GFP reporter alleles forpks-1, a gene expressed in the CAN neuron and cells of the alimentary system, as well as reporter alleles for the panneuronal, nuclear markerunc-75. Hence, the relative properties of mScarlet-I3 and GFP do not depend on cellular or subcellular context. In all cases, mScarlet-I3 reporters also show improved signal-to-noise ratio compared to GFP.
Publisher
Cold Spring Harbor Laboratory