Development of a Spectral Flow Cytometry Analysis Pipeline for High-Dimensional Immune Cell Characterization

Author:

Vardaman Donald,Ali Md AkkasORCID,Bolding Chase,Tidwell Harrison,Stephens Holly,Tyrrell Daniel J.ORCID

Abstract

AbstractFlow cytometry is a widely used technique for immune cell analysis, offering insights into cell composition and function. Spectral flow cytometry allows for high-dimensional analysis of immune cells, overcoming limitations of conventional flow cytometry. However, analyzing data from large antibody panels can be challenging using traditional bi-axial gating strategies. Here, we present a novel analysis pipeline designed to improve analysis of spectral flow cytometry. We employ this method to identify rare T cell populations in aging. We isolated splenocytes from young (2–3 months) and aged (18–19 months) female mice then stained these with a panel of 20 fluorescently labeled antibodies. Spectral flow cytometry was performed, followed by data processing and analysis using Python within a Jupyter Notebook environment to perform batch correction, unsupervised clustering, dimensionality reduction, and differential expression analysis. Our analysis of 3,776,804 T cells from 11 spleens revealed 34 distinct T cell clusters identified by surface marker expression. We observed significant differences between young and aged mice, with certain clusters enriched in one age group over the other. Naïve, effector memory, and central memory CD8+and CD4+T cell subsets exhibited age-associated changes in abundance and marker expression. Additionally, γδ T cell clusters showed differential abundance between age groups. By leveraging high-dimensional analysis methods borrowed from single-cell RNA sequencing analysis, we identified age-related differences in T cell subsets, providing insights into the immune aging process. This approach offers a robust, free, and easily implemented analysis pipeline for spectral flow cytometry data that may facilitate the discovery of novel therapeutic targets for age-related immune dysfunction.

Publisher

Cold Spring Harbor Laboratory

Reference58 articles.

1. Clinical applications of flow cytometry in hematology and immunology

2. Flow Cytometry: An Overview

3. Use of Flow Cytometry in Clinical Practice;J Adv Pract Oncol,2015

4. Optimisation of SARS-CoV-2 peptide stimulation and measurement of cytokine output by intracellular flow cytometry and bio-plex analysis;J Immunol Methods,2023

5. Intracellular flow cytometry staining of antibody-secreting cells using phycoerythrin-conjugated antibodies: pitfalls and solutions;Antib Ther,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3