Degradation Bottlenecks and Resource Competition in Transiently and Stably Engineered Mammalian Cells

Author:

Gabrielli JacopoORCID,Di Blasi RobertoORCID,Kontoravdi CleoORCID,Ceroni FrancescaORCID

Abstract

AbstractDegradation tags, otherwise known as degrons, are portable sequences that can be used to alter protein stability. Here, we report that degron-tagged proteins compete for cellular degradation resources in engineered mammalian cells leading to coupling of the degradation rates of otherwise independently expressed proteins when constitutively targeted human degrons are adopted. By adopting inducible bacterial and plant degrons we also highlight how orthogonality and uncoupling of synthetic construct degradation from the native machinery can be achieved. We show the effect of this competition to be dependent on the context of the degrons where C-terminal degradation appears to impact competition the most across our tested settings. We then build a genomically integrated capacity monitor tagged with different degrons and confirm resource competition between genomic and transiently expressed DNA constructs. This work expands the characterisation of resource competition in engineered mammalian cells to degradation also including integrated systems, providing a framework for the optimisation of heterologous expression systems to advance applications in fundamental and applied biological research.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3