Beyond Histones: Unveiling the Functional Roles of Protein Acetylation in Prokaryotes and Eukaryotes

Author:

Sousa Bonifácio Bruno,Barbosa Leite Ariely,de Castro Nascimento Sousa Ana Caroline,Rodrigues Maran Suellen,Severo Gomes Antoniel Augusto,Vasconcelos Elton J. R.,Silvio Moretti NilmarORCID

Abstract

ABSTRACTLysine acetylation plays a crucial role in cellular processes and is found across various evolutionary organisms. Recent advancements in proteomic techniques revealed the presence of acetylation in thousands of non-histone proteins. Here, we conducted extensive meta-analysis of 48 acetylomes spanning diverse organisms, including archaea, bacteria, fungi, protozoa, worms, plants, insects, crustacea, fish, and mammals. Our analyzes revealed a predominance of a single acetylation site in a protein detected in all studied organisms, and proteins heavily acetylated, with >5-10 acetylated-sites, were represented by Hsp70, histone or transcription GTP-biding domain. Moreover, using gene enrichment approaches we found that ATP metabolic processes, glycolysis, aminoacyl-tRNA synthetase pathways and oxidative stress response are among the most acetylated cellular processes. Finally, to better explore the regulatory function of acetylation in glycolysis and oxidative stress we used aldolase and superoxide dismutase A (SODA) enzymes as model. For aldolase, we found that K147 acetylation, responsible to regulate human enzyme, conserved in all phylogenic clade, suggesting that this acetylation might play the same role in other species; while for SODA, we identified many lysine residues in different species present in the tunnel region, which was demonstrated for human andTrypanosoma cruzi,as negative regulator, also suggesting a conserved regulatory mechanism. In conclusion, this study provides insights into the conservation and functional significance of lysine acetylation in different organisms emphasizing its roles in cellular processes, metabolic pathways, and molecular regulation, shedding light in the extensive function of non-histone lysine acetylation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3