Epidemiological and phylogenetic analyses of public SARS-CoV-2 data from Malawi

Author:

Afuleni Mwandida Kamba,Cahuantzi Roberto,Lythgoe Katrina A.,Mulaga Atupele Ngina,Hall Ian,Johnson Olatunji,House ThomasORCID

Abstract

AbstractThe novel Coronavirus SARS-CoV-2 was first identified in a person in Wuhan city, China in December 2019, and had spread to all continents in less than three months. While there were many similarities between the resulting COVID-19 pandemic in different regions and countries, there were also important differences, motivating systematic quantitative analysis of available data for as diverse a set of geographical locations as possible to drive generation of insights relevant for response to COVID-19 and other respiratory viral and pandemic threats. Malawi had its first COVID-19 case on 2 April 2020 and, like many countries in the Global South, had access to orders of magnitude less data than countries in the Global North to inform its response. Here, we present modelling analyses of SARS-CoV-2 epidemiology and phylogenetics in Malawi from 2 April 2020 to 19 October 2022. We carried out this analysis using open-source software tools and open data on cases, deaths, geography, demographics, and viral genomics. In particular, we used R to visualise the raw data and results, alongside Generalised Additive Models (GAMs), which were fit to case and mortality data to describe the incidence trends, growth rate and doubling time of SARS-CoV-2. IQTree, TreeTime and interactive Tree of Life were used to perform the phylogenetic analysis. This analysis reveals five major waves of COVID-19 in Malawi, associated with different lineages: (1) Early variants; (2) Beta; (3) Delta; (4) Omicron BA.1; (5) Other Omicron. Some sequences associated with the Alpha variant were present but these did not appear to drive a major wave as they did in some other countries. Case Fatality Ratios were higher for Delta, and lower for Omicron, than for earlier lineages. Phylogeny reveals separation of the tree into major lineages as would be expected, and early emergence of Omicron, as is consistent with proximity to the likely origin of this variant. Both variant prevalence and overall rates of cases and deaths were highly geographically heterogeneous. We argue that such analyses could have been and could in future be carried out in real time in Malawi and other countries in the Global South with similar computational and data resources.Author summaryMalawi detected its first infection with SARS-CoV-2 at the start of April 2020, and like many other countries in the Global South did not have comparable volumes of data to Global North countries to inform its response to the COVID-19 pandemic. Here, we present quantitative analyses of the epidemiology and phylogenetics of SARS-CoV-2 in Malawi using open software and data that can be straightforwardly deployed in other countries and for other pathogens, under similar data availability. We observed five major COVID waves over a period from April 2020 to October 2022, each associated with different variants of SARS-CoV-2, as well as significant geographical heterogeneity. Waves were typically associated with early doubling times of between 7 and 4 days, with the second major wave driven by the Beta variant rather than the Alpha and Gamma variants observed in some other countries. Pylogenetic analysis revealed a temporal tree structure consistent with both major variant structure identified elsewhere, and known epidemiology of major variants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3