ProBASS – a language model with sequence and structural features for predicting the effect of mutations on binding affinity

Author:

Gurusinghe Sagara N.S.,Wu Yibing,DeGrado WilliamORCID,Shifman Julia M.ORCID

Abstract

AbstractProtein-protein interactions (PPIs) govern virtually all cellular processes. Even a single mutation within PPI can significantly influence overall protein functionality and potentially lead to various types of diseases. To date, numerous approaches have emerged for predicting the change in free energy of binding (ΔΔGbind) resulting from mutations, yet the majority of these methods lack precision. In recent years, protein language models (PLMs) have been developed and shown powerful predictive capabilities by leveraging both sequence and structural data from protein-protein complexes. Yet, PLMs have not been optimized specifically for predicting ΔΔGbind. We developed an approach to predict effects of mutations on PPI binding affinity based on two most advanced protein language models ESM2 and ESM-IF1 that incorporate PPI sequence and structural features, respectively. We used the two models to generate embeddings for each PPI mutant and subsequently fine-tuned our model by training on a large dataset of experimental ΔΔGbindvalues. Our model, ProBASS (Protein Binding Affinity from Structure and Sequence) achieved a correlation with experimental ΔΔGbindvalues of 0.83 ± 0.05 for single mutations and 0.69 ± 0.04 for double mutations when model training and testing was done on the same PDB. Moreover, ProBASS exhibited very high correlation (0.81 ± 0.02) between prediction and experiment when training and testing was performed on a dataset containing 2325 single mutations in 132 PPIs. ProBASS surpasses the state-of-the-art methods in correlation with experimental data and could be further trained as more experimental data becomes available. Our results demonstrate that the integration of extensive datasets containing ΔΔGbindvalues across multiple PPIs to refine the pre-trained PLMs represents a successful approach for achieving a precise and broadly applicable model for ΔΔGbindprediction, greatly facilitating future protein engineering and design studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3