Spatial structure affects the establishment and persistence of closed microbial ecosystems

Author:

Mansour IndiaORCID,Hähnlein Maximilian,Minkewitz Luise,Wilk Emely Noa,Remus-Emsermann Mitja,Antonovics Janis,Rillig Matthias C.

Abstract

ABSTRACTWhy Earth has remained habitable for billions of years is a question that has long fostered debate in biology and earth sciences. Closed systems approaches have yielded information about the underlying mechanisms, including the persistence of matter recycling. However, the majority of these studies have been conducted under relatively homogenous conditions using aquatic systems. Here, we investigated the effect of spatial structure and heterogeneity on the persistence or failure of closed microbial biospheres. This mimics unsaturated soil-like conditions that were inoculated with a two species producer-decomposer community. Specifically, we investigated how microhabitat physical structure and necromass spatial distribution affected population dynamics and system time-to-failure. We observed strong effects of microhabitat structure, including particle size and moisture level, on persistence at both the population and system levels. Systems containing the smallest substrate particles failed quickly and on average did not support decomposer populations except at high initial cell densities. Persistence was promoted by larger substrate particles, likely due to larger pore sizes resulting in shorter movement distances and better accessibility to resource patches (i.e. necromass). Building on these findings, we manipulated necromass patch distribution and observed that algae clustered around necromass patches when present. Necromass patch distribution had small but significant effects on persistence, with lower persistence in intermediate vs. high or low necromass heterogeneity. Together these findings indicate a limit to the spatial/physical parameter space in which producer-decomposer communities can establish and self-sustain via self-recycling of necromass.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3