New mitochondrial gene order arrangements and evolutionary implications in the subclass Octocorallia

Author:

Poliseno AngeloORCID,Quattrini Andrea M.ORCID,Lau Yee WahORCID,Pirro Stacy,Reimer James D.ORCID,McFadden Catherine S.ORCID

Abstract

AbstractThe complete mitochondrial genomes of octocorals typically range from 18.5 kb to 20.5 kb in length, and include 14 protein coding genes (PCGs), two ribosomal RNA genes and one tRNA. To date seven different gene orders (A-G) have been described, yet comprehensive investigations of the actual number of arrangements, as well as comparative analyses and evolutionary reconstructions of mitochondrial genome evolution within the whole subclass Octocorallia have been often overlooked. Here we considered the complete mitochondrial genomes available for octocorals and explored their structure and gene order variability. Our results updated the actual number of mitochondrial gene order arrangements so far known for octocorals from seven to twelve, and allowed us to explore and preliminarily discuss the role of some of the structural and functional factors in the mitogenomes. We performed comparative mitogenomic analyses on the existing and novel octocoral gene orders, considering different mitogenomic structural features such as genome size, GC percentage, AT- and GC-skewness. The mitochondrial gene order history mapped on a recently published nuclear loci phylogeny showed that the most common rearrangement events in octocorals are inversions, and that the mitochondrial genome evolution in the subclass is discontinuous, with rearranged gene orders restricted only to some regions of the tree. We believe that different rearrangement events arose independently and most likely that new gene orders, instead of being derived from other rearranged orders, came from the ancestral and most common gene order. Finally, our data demonstrate how the study of mitochondrial gene orders can be used to explore the evolution of octocorals and in some cases can be used to assess the phylogenetic placement of certain taxa.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3