Structures of the human transcription factor brachyury offer insights into DNA recognition, and identify small molecule binders for the development of degraders for cancer therapy

Author:

Newman Joseph AORCID,Gavard Angeline E,Imprachim Nergis,Aitkenhead Hazel,Sheppard Hadley E.,Clarke Paul A.,Hossain Mohammad AnwarORCID,Temme Louisa,Oh Hans J.,Wells Carrow I.,Davis-Gilbert Zachary W.,Workman Paul,Gileadi Opher,Drewry David H.

Abstract

AbstractThe transcription factor brachyury is a member of the T-Box family of transcription factors. It is active during embryogenesis and is required for the formation of the posterior mesoderm and the notochord in vertebrates. Aside from its role in embryogenesis, brachyury plays an essential role in tumour growth of the rare chordoma bone cancer and is implicated in other solid tumours. Given that brachyury is minimally expressed in healthy tissues, these findings suggest that brachyury is a potential therapeutic target in cancer. Unfortunately, as a ligandless transcription factor, brachyury has historically been considered undruggable. To investigate direct targeting of brachyury by small molecules, we initially determined the structure of human brachyury both in complex with its cognate DNA and in the absence of DNA. Analysis of these structures provided insights into brachyury DNA binding and the structural context of the G177D variant which is strongly associated with chordoma risk. We used these structures to perform a crystallographic fragment screen of brachyury and identify hotspot regions on numerous pockets on the brachyury surface. Finally, we have performed follow-up chemistry on fragment hits and describe the structure-based progression of a thiazole-containing chemical series. Excitingly, we have produced brachyury binders with low µM potency that can serve as starting point for further medicinal chemistry efforts. These data show that brachyury is ligandable and provides an example of how crystallographic fragment screening may be used to find ligands to target protein classes that are traditionally difficult to address using other approaches.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3