Cell type specific roles of FOXP1 during early neocortical murine development

Author:

Ortiz AnaORCID,Ayhan Fatma,Harper Matthew,Konopka Genevieve

Abstract

AbstractCortical development is a tightly controlled process and any deviation during development may increase the susceptibility to neurodevelopmental disorders, such as autism spectrum disorders (ASD). Numerous studies identified mutations inFOXP1, a transcription factor enriched in the neocortex, as causal for ASD and FOXP1 syndrome. Our group has shown thatFoxp1deletion in the mouse cortex leads to overall reduced cortex thickness, alterations in cortical lamination, and changes in the relative thickness of cortical layers. However, the developmental and cell type-specific mechanisms underlying these changes remained unclear. This work characterizes the developmental requirement of neocorticalFoxp1at key embryonic and perinatal ages using a conditional knock-out ofFoxp1. We find thatFoxp1deletion results in accelerated pseudo-age during early neurogenesis, increased cell cycle exit during late neurogenesis, altered gene expression and chromatin accessibility, and selective migration deficits in a subset of upper-layer neurons. These data explain the postnatal differences observed in cortical layers and relative cortical thickness. We also highlight genes regulated by FOXP1 and their enrichment with high-confidence ASD or synaptic genes. Together, these results underscore a network of neurodevelopmental disorder-related genes that may serve as potential modulatory targets for postnatal modification relevant to ASD and FOXP1 syndrome.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3