Ubp2 modulates DJ-1-mediated redox-dependent mitochondrial dynamics inSaccharomyces cerevisiae

Author:

Biswas Sananda,D’Silva PatrickORCID

Abstract

AbstractMitochondrial integrity is a crucial determinant of overall cellular health. Mitochondrial dysfunction and impediments in regulating organellar homeostasis contribute majorly to the pathophysiological manifestation of several neurological disorders. Mutations in human DJ-1 (PARK7) have been implicated in the deregulation of mitochondrial homeostasis, a critical cellular etiology observed in Parkinson’s disease progression. DJ-1 is a multifunctional protein belonging to the DJ-1/ThiJ/PfpI superfamily, conserved across the phylogeny. Although the pathophysiological significance of DJ-1 has been well-established, the underlying molecular mechanism(s) by which DJ-1 paralogs modulate mitochondrial maintenance and other cellular processes remains elusive. UsingSaccharomyces cerevisiaeas the model organism, we unravel the intricate mechanism by which yeast DJ-1 paralogs (collectively called Hsp31 paralogs) modulate mitochondrial homeostasis. Our study establishes a genetic synthetic interaction between Ubp2, a cysteine-dependent deubiquitinase, and DJ-1 paralogs. In the absence of DJ-1 paralogs, mitochondria adapt to a highly tubular network due to enhanced expression of Fzo1. Intriguingly, the loss of Ubp2 restores the mitochondrial integrity in the DJ-1 deletion background by modulating the ubiquitination status of Fzo1. Besides, the loss of Ubp2 in the absence of DJ-1 restores mitochondrial respiration and functionality by regulating the mitophagic flux. Further, Ubp2 deletion makes cells resistant to oxidative stress without DJ-1 paralogs. For the first time, our study deciphers functional crosstalk between Ubp2 and DJ-1 in regulating mitochondrial homeostasis and cellular health.Author SummaryMitochondria are dynamic organelles essential for generating the energy required to maintain cellular viability and drive biological processes. Mitochondrial structures undergo continuous remodeling, modulating their function in response to cellular cues. The plasticity of mitochondrial structures is due to conserved fusion-fission proteins, thus enabling cells to adapt to metabolic changes. Mutations inPARK7, encoding for DJ-1, lead to an imbalance in mitochondrial dynamics and culminate in the progression of neurodegenerative disorders such as Parkinson’s disease (PD). DJ-1 belongs to the highly conservedDJ-1/ThiJ/Pfp superfamily of multifunctional proteins.Saccharomyces cerevisiaeencodes for four paralogs, which belong to the DJ-1 superfamily. Recent studies demonstrate the role of yeast DJ-1 members in regulating mitochondrial integrity and oxidative stress response. However, the mechanism(s) by which the paralogs mediate cytoprotective action remains elusive. The current study addresses the mechanistic lacuna by delineating cross-talk between Ubp2, a deubiquitinase, and redox-sensitive DJ-1 paralogs in regulating mitochondrial health. Our results suggest that elevated expression of Ubp2 in cells lacking DJ-1 paralogs promotes hyperfused mitochondrial structures. At the same time, in the absence of DJ-1 paralogs, the levels of Fzo1 expression are enhanced significantly due to its altered ubiquitination status. Intriguingly, mitochondrial dynamics and cellular health were reinstated upon deletion of Ubp2, particularly in cells with combinatorial deletion of DJ-1 paralogs in yeast. The study thus provides evidence linking the role of DJ-1 and deubiquitinase in the maintenance of mitochondrial dynamics, which can further aid in understanding the mechanism causing PD progression.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3