Gradient matching accelerates mixed-effects inference for biochemical networks

Author:

van Oppen Yulan B.ORCID,Milias-Argeitis AndreasORCID

Abstract

SummarySingle-cell time series data frequently display considerable variability across a cell population. The current gold standard for inferring parameter distributions across cell populations is the Global Two Stage (GTS) approach for nonlinear mixed-effects (NLME) models. However, this method is computationally intensive, as it makes repeated use of non-convex optimization that in turn requires numerical integration of the underlying system. Here, we propose the Gradient Matching GTS (GMGTS) method as an efficient alternative to GTS. Gradient matching offers an integration-free approach to parameter estimation that is particularly powerful for dynamical systems that are linear in the unknown parameters, such as biochemical networks modeled by mass action kinetics. Here, we harness the power of gradient matching by integrating it into the GTS framework. To this end, we significantly expand the capabilities of gradient matching via uncertainty propagation calculations and the development of an iterative estimation scheme for partially observed systems. Through comparisons of GMGTS with GTS in different inference setups, we demonstrate that our method provides a significant computational advantage, thereby facilitating the use of complex NLME models in systems biology applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3