cryoSPHERE: Single-particle heterogeneous reconstruction from cryo EM

Author:

Ducrocq Gabriel,Grunewald LukasORCID,Westenhoff SebastianORCID,Lindsten FredrikORCID

Abstract

AbstractThe three-dimensional structure of a protein plays a key role in determining its function. Methods like AlphaFold have revolutionized protein structure prediction based only on the amino-acid sequence. However, proteins often appear in multiple different conformations, and it is highly relevant to resolve the full conformational distribution. Single-particle cryo-electron microscopy (cryo EM) is a powerful tool for capturing a large number of images of a given protein, frequently in different conformations (referred to asparticles). The images are, however, very noisy projections of the protein, and traditional methods for cryo EM reconstruction are limited to recovering a single, or a few, conformations. In this paper, we introduce cryoSPHERE, a deep learning method that takes as input a nominal protein structure, e.g. from AlphaFold, learns how to divide it into segments, and how to move these as approximately rigid bodies to fit the different conformations present in the cryo EM dataset. This formulation is shown to provide enough constraints to recover meaningful reconstructions of single protein structures. This is illustrated in three examples where we show consistent improvements over the current state-of-the-art for heterogeneous reconstruction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3