Loss of neuronal lysosomal acid lipase drives amyloid pathology in Alzheimer’s disease

Author:

Barnett Alexandra M,Dawkins Lamar,Zou Jian,McNair Elizabeth,Nikolova Viktoriya D,Moy Sheryl S,Sutherland Greg T,Stevens Julia,Colie Meagan,Katemboh Kemi,Kellner Hope,Damian Corina,DeCastro Sagan,Vetreno Ryan P,Coleman Leon G

Abstract

AbstractUnderlying drivers of late-onset Alzheimer’s disease (LOAD) pathology remain unknown. However, multiple biologically diverse risk factors share a common pathological progression. To identify convergent molecular abnormalities that drive LOAD pathogenesis we compared two common midlife risk factors for LOAD, heavy alcohol use and obesity. This revealed that disrupted lipophagy is an underlying cause of LOAD pathogenesis. Both exposures reduced lysosomal flux, with a loss of neuronal lysosomal acid lipase (LAL). This resulted in neuronal lysosomal lipid (NLL) accumulation, which opposed Aβ localization to lysosomes. Neuronal LAL loss both preceded (with aging) and promoted (targeted knockdown) Aβ pathology and cognitive deficits in AD mice. The addition of recombinant LALex vivoand neuronal LAL overexpressionin vivoprevented amyloid increases and improved cognition. In WT mice, neuronal LAL declined with aging and correlated negatively with entorhinal Aβ. In healthy human brain, LAL also declined with age, suggesting this contributes to the age-related vulnerability for AD. In human LOAD LAL was further reduced, correlated negatively with Aβ1-42, and occurred with polymerase pausing at the LAL gene. Together, this finds that the loss of neuronal LAL promotes NLL accumulation to impede degradation of Aβ in neuronal lysosomes to drive AD amyloid pathology.SummaryCellular and molecular drivers of late-onset Alzheimer’s disease (LOAD) are unknown, though several risk factors account for the majority of disease incidence1–5. Though diverse in their biological natures, each of these risk exposures converge on a shared pathological progression with the accumulation of amyloid early in the disease. Human genetic and transcriptomic studies suggest a role for altered lipid metabolism6–9, though the mechanism has been unknown. Here, using two common midlife risk exposures for LOAD, we found that dysfunctional lipophagy caused by the loss of lysosomal acid lipase (LAL) promotes early LOAD pathogenesis. Both midlife obesity and heavy alcohol reduced neuronal LAL, causing an increase in neuronal lysosomal lipid, and a subsequent accumulation of Aβ in the extra-lysosomal cytosol. This loss of LAL preceded and promoted Aβ pathology and cognitive deficits in AD mice. The addition of recombinant LALex vivoand neuronal LAL overexpressionin vivoprevented increases in amyloid and improved cognition. In human brain, LAL declined with age in healthy subjects, similar to rodents, showing robust losses in LOAD subjects with polymerase pausing. Together, this implicates neuronal LAL loss in LOAD pathogenesis and presents LAL as a promising diagnostic, preventative, and/or therapeutic target for AD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3