Participatory science methods to monitor water quality and ground truth remote sensing of the Chesapeake Bay

Author:

Neale PatrickORCID,Brown ShelbyORCID,Sill Tara,Cawood Alison,Tzortziou Maria,Park Jieun,Lee Min-Sun,Paquette Beth

Abstract

AbstractMeasurements by volunteer scientists using participatory science methods in combination with high resolution remote sensing can improve our ability to monitor water quality changes in highly vulnerable and economically valuable nearshore and estuarine habitats. In the Chesapeake Bay (USA), tidal tributaries are a focus of watershed and shoreline management efforts to improve water quality. The Chesapeake Water Watch program seeks to enhance the monitoring of tributaries by developing and testing methods for volunteer scientists to easily measure chlorophyll, turbidity, and colored dissolved organic matter (CDOM) to inform Bay stakeholders and improve algorithms for analogous remote sensing (RS) products. In the program, trained volunteers have measured surface turbidity using a smartphone app, HydroColor, calibrated with a photographer’s gray card. In vivo chlorophyll and CDOM fluorescence were assessed in surface samples with hand-held fluorometers (Aquafluor) located at sample processing “hubs” where volunteers drop-off samples for same day processing. In validation samples, HydroColor turbidity and Aquafluor in vivo chlorophyll and CDOM fluorescence were linearly related to standard analytical measures of turbidity, chlorophyll and CDOM, respectively, with R2values ranging from 0.65 to 0.85. These methods are being used for both repeat sampling at fixed sites of interest and ad-hoc “blitzes” to synoptically sample tributaries all around the Bay in coordination with satellite overpasses. All data is accessible on a public database (serc.fieldscope.org) and can be a resource to monitor long-term trends in the tidal tributaries as well as detect and diagnose causes of events of concern such as algal blooms and storm-induced reductions in water clarity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3