Modulation of beta oscillatory dynamics in motor and frontal areas during physical fatigue

Author:

Matta Pierre-MarieORCID,Baurès RobinORCID,Duclay JulienORCID,Alamia AndreaORCID

Abstract

AbstractBeta-band oscillations have been suggested to promote the maintenance of the current motor (or cognitive) set, thus signaling the ‘status quo’ of the system. While this hypothesis has been reliably demonstrated in many studies, it fails to explain changes in beta-band activity due to the accumulation of physical fatigue. In the current study, we aimed to reconcile the functional role of beta oscillations during physical fatigue within the status quo theory. Using an innovative EEG design, we identified two distinct beta-band power dynamics in the motor areas as fatigue rises: (i) an enhancement at rest, supposedly promoting the resting state, and (ii) a decrease during contraction, thought to reflect the increase in motor cortex activation necessary to cope with the muscular fatigue. We then conducted effective connectivity analyses, which revealed that the modulations during contractions were driven by frontal areas. Finally, we implement a biologically plausible model to replicate and characterize our results mechanistically. Together, our findings anchor the physical fatigue paradigm within the status quo theory, thus shedding light on the functional role of beta oscillations in physical fatigue. We further discuss a unified interpretation that might explain the conflicting evidence previously encountered in the physical fatigue literature.

Publisher

Cold Spring Harbor Laboratory

Reference70 articles.

1. Changes in EEG during graded exercise on a recumbent cycle ergometer;Journal of Sports Science & Medicine,2008

2. The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference

3. Understanding the Role of Sensorimotor Beta Oscillations

4. Changes in the functional MR signal in motor and non-motor areas during intermittent fatiguing hand exercise

5. EMG/force relations and fatigue of human voluntary contractions;Exercise and Sport Sciences Reviews,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3