Discovery of tumour indicating morphological changes in benign prostate biopsies through AI

Author:

Chelebian EduardORCID,Avenel ChristopheORCID,Järemo HelenaORCID,Andersson Pernilla,Bergh AndersORCID,Wählby CarolinaORCID

Abstract

AbstractBackground and ObjectiveDiagnostic needle biopsies that miss clinically significant prostate cancers (PCa) likely sample benign tissue adjacent to cancer. Such samples may contain changes indicating the presence of cancer elsewhere in the organ. Our goal is to evaluate if artificial intelligence (AI) can identify morphological characteristics in benign biopsies of men with raised PSA that predict the future detection of clinically significant PCa during a 30-month follow-up.MethodsA retrospective cohort of 232 patients with raised PSA and benign needle biopsies, paired by age, year of diagnosis and PSA levels was collected. Half were diagnosed with PCa within 30 months, while the other half remained cancer-free for at least eight years. AI model performance was assessed using the area under the receiver operating characteristic curve (AUC) and attention maps were used to visualise the morphological patterns relevant for cancer diagnosis as captured by the model.Key findings and LimitationsThe AI model could identify patients that were later diagnosed with PCa from their initial benign biopsies with an AUC of 0.82. Distinctive morphological patterns, such as altered stromal collagen and changes in glandular epithelial cell composition, were revealed.Conclusions and Clinical ImplicationsAI applied to standard haematoxylin-eosin sections identifies patients initially diagnosed as negative but later found to have clinically significant PCa. Morphological patterns offer insights into the long-ranging effects of PCa in the benign parts of the tumour-bearing organ.Patient SummaryUsing AI, we identified subtle changes in normal prostate tissue suggesting the presence of tumours elsewhere in the prostate. This could aid in the early identification of potentially high-risk tumours, limiting overuse of prostate biopsies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3