Abstract
AbstractBackground and ObjectiveDiagnostic needle biopsies that miss clinically significant prostate cancers (PCa) likely sample benign tissue adjacent to cancer. Such samples may contain changes indicating the presence of cancer elsewhere in the organ. Our goal is to evaluate if artificial intelligence (AI) can identify morphological characteristics in benign biopsies of men with raised PSA that predict the future detection of clinically significant PCa during a 30-month follow-up.MethodsA retrospective cohort of 232 patients with raised PSA and benign needle biopsies, paired by age, year of diagnosis and PSA levels was collected. Half were diagnosed with PCa within 30 months, while the other half remained cancer-free for at least eight years. AI model performance was assessed using the area under the receiver operating characteristic curve (AUC) and attention maps were used to visualise the morphological patterns relevant for cancer diagnosis as captured by the model.Key findings and LimitationsThe AI model could identify patients that were later diagnosed with PCa from their initial benign biopsies with an AUC of 0.82. Distinctive morphological patterns, such as altered stromal collagen and changes in glandular epithelial cell composition, were revealed.Conclusions and Clinical ImplicationsAI applied to standard haematoxylin-eosin sections identifies patients initially diagnosed as negative but later found to have clinically significant PCa. Morphological patterns offer insights into the long-ranging effects of PCa in the benign parts of the tumour-bearing organ.Patient SummaryUsing AI, we identified subtle changes in normal prostate tissue suggesting the presence of tumours elsewhere in the prostate. This could aid in the early identification of potentially high-risk tumours, limiting overuse of prostate biopsies.
Publisher
Cold Spring Harbor Laboratory