A Zero-Inflated Hierarchical Generalized Transformation Model to Address Non-Normality in Spatially-Informed Cell-Type Deconvolution

Author:

Melton Hunter J.ORCID,Bradley Jonathan R.ORCID,Wu ChongORCID

Abstract

AbstractOral squamous cell carcinomas (OSCC), the predominant head and neck cancer, pose significant challenges due to late-stage diagnoses and low five-year survival rates. Spatial transcriptomics offers a promising avenue to decipher the genetic intricacies of OSCC tumor microenvironments. In spatial transcriptomics, Cell-type deconvolution is a crucial inferential goal; however, current methods fail to consider the high zero-inflation present in OSCC data. To address this, we develop a novel zero-inflated version of the hierarchical generalized transformation model (ZI-HGT) and apply it to the Conditional AutoRegressive Deconvolution (CARD) for cell-type deconvolution. The ZI-HGT serves as an auxiliary Bayesian technique for CARD, reconciling the highly zero-inflated OSCC spatial transcriptomics data with CARD’s normality assumption. The combined ZI-HGT + CARD framework achieves enhanced cell-type deconvolution accuracy and quantifies uncertainty in the estimated cell-type proportions. We demonstrate the superior performance through simulations and analysis of the OSCC data. Furthermore, our approach enables the determination of the locations of the diverse fibroblast population in the tumor microenvironment, critical for understanding tumor growth and immunosuppression in OSCC.

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

1. Fibroblasts in the tumor microenvironment: Shield or spear?;International Journal of Molecular Sciences,2018

2. Tumor-associated fibroblasts predominantly come from local and not circulating precursors

3. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response;Nature Communications,2023

4. Sparsim single cell: a count data simulator for scrna-seq data;Bioinformatics,2020

5. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems on jstor. Journal of the Royal Statistical Society Series B, pages 192–236.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3