Effects of chronodisruption and alcohol consumption on gene expression in reward-related brain areas in female rats

Author:

Meyer C.,Schoettner K.,Amir S.

Abstract

ABSTRACTCircadian dysfunction caused by exposure to aberrant light-dark conditions is associated with abnormal alcohol consumption in humans and animal models. Changes in drinking behavior have been linked to alterations in clock gene expression in reward-related brain areas, which could be attributed to either the effect of chronodisruption or alcohol. To date, however, the combinatory effect of circadian disruption and alcohol on brain functions is less understood. Moreover, despite known sex differences in alcohol drinking behavior, most research has been carried out on male subjects only, and therefore implications for females remain unclear.To address this gap, adult female rats housed under an 11h/11h light-dark cycle (LD22) or standard light conditions (LD24, 12h/ 12h light-dark) were given access to an intermittent alcohol drinking protocol (IA20%) to assess the impact on gene expression in brain areas implicated in alcohol consumption and reward: the prefrontal cortex (PFC), nucleus accumbens (NAc), and dorsal striatum (DS). mRNA expression of core clock genes (Bmal1,Clock,Per2), sex hormone receptors (ERβ,PR), glutamate receptors (mGluR5,GluN2B), a calcium-activated channel (Kcnn2), and an inflammatory cytokine (TNF-α) were measured at two-time points relative to the locomotor activity cycle.Housing under LD22 did not affect alcohol intake but significantly disrupted circadian activity rhythms and reduced locomotion. Significant changes in the expression ofBmal1,ERβ, andTNF-αwere primarily related to the aberrant light conditions, whereas changes inPer2andPRexpression were associated with the effect of alcohol. Collectively, these results indicate that disruption of circadian rhythms and/or intermittent alcohol exposure have distinct effects on gene expression in the female brain, which may have implications for the regulation of alcohol drinking, addiction, and, ultimately, brain health.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3